Trigonometric Gaussian quadrature on subintervals of the period

نویسنده

  • Marco Vianello
چکیده

We construct a quadrature formula with n+ 1 angles and positive weights, exact in the (2n+1)-dimensional space of trigonometric polynomials of degree ≤ n on intervals with length smaller than 2π. We apply the formula to the construction of product Gaussian quadrature rules on circular sectors, zones, segments and lenses. 2000 AMS subject classification: 65D32.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subperiodic trigonometric interpolation and quadrature

We study theoretically and numerically trigonometric interpolation on symmetric subintervals of [−π, π], based on a family of Chebyshevlike angular nodes (subperiodic interpolation). Their Lebesgue constant increases logarithmically in the degree, and the associated Fejérlike trigonometric quadrature formula has positive weights. Applications are given to the computation of the equilibrium meas...

متن کامل

Error Bound of Certain Gaussian Quadrature Rules for Trigonometric Polynomials

In this paper we give error bound for quadrature rules of Gaussian type for trigonometric polynomials with respect to the weight function w(x) = 1+cosx, x ∈ (−π, π), for 2π-periodic integrand, analytic in a circular domain. Obtained theoretical bound is checked and illustrated on some numerical examples.

متن کامل

Polynomial approximation and quadrature on geographic rectangles

Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of Sd, d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined by longitudes and (co)latitudes (geogra...

متن کامل

Intractability Results for Positive Quadrature Formulas and Extremal Problems for Trigonometric Polynomials

Lower bounds for the error of quadrature formulas with positive weights are proved. We get intractability results for quasi-Monte Carlo methods and, more generally, for positive formulas. We consider general classes of functions but concentrate on lower bounds for relatively small classes of trigonometric polynomials. We also conjecture that similar lower bounds hold for arbitrary quadrature fo...

متن کامل

Trigonometric and Gaussian Quadrature

Some relationships are established between trigonometric quadrature and various classical quadrature formulas. In particular Gauss-Legendre quadrature is shown to be a limiting case of trigonometric quadrature. In an earlier paper [1] it was noted that there exist trigonometric and exponential analogs of Gaussian quadrature formulas. We now extend those results to show several interesting featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012